En20120724001.jpg
About us Advertisement service Contact us Into the Chinese
Home Macro-economy Steel News Raw Material Equipment & Technology Steel End-users Products
Steel News Daily
Equipment & Technology
Turning waste tyre into ‘green steel’
  Release time: 2016/08/08 10:05:00  Author: 

 

‘Green Steel’ could be the answer to deal with the growing problem of disposal of waste tyres globally.

Mumbai-born scientist Professor Veena Sahajwalla, Director, Centre for Sustainable Materials Research and Technology at University of New South Wales (UNSW) Australia, who has invented Polymer Injection Technology that converts old rubber tyres to metal alloys that make ‘Green Steel’ says this could be the answer to deal with the growing problem of disposal of waste tyres globally.


Excerpts from an interview:

How alarming is the problem of waste tyres globally?

Every year, over one billion tyres are manufactured worldwide, and equal number of tyres are permanently removed from vehicles, becoming waste.

The U.S. is the largest producer of waste tyres, about 290 million a year, although increases in new vehicles sales in China and India are rapidly contributing to waste tyre volumes.

Although modern tyres are fundamentally rubber products, they are a complex mix of natural and synthetic rubbers, and various structural reinforcing elements including metals and chemical additives.

This complexity has led to stockpiling, dumping and diversion to landfill. This has exposed communities to environmental and health risks and has squandered valuable resources locked up in tyre dumps.

Stockpiled tyres are at risk of fire and toxic smoke, the largest tyre fire in the world began in Wales in 1989 at Heyope, where 10 million tyres had been dumped, and took 15 years to extinguish.

Other risks include the stagnant water in tyres that provides breeding grounds for mosquitoes and leaching of toxic substances into soils.

Globally, in 2011, only 7% of waste tyres were recycled on site, 11% were burned for fuel, 5% were exported for processing elsewhere. The remaining 77% were sent to landfills, stockpiled, or illegally dumped; the equivalent of some 765 million tyres a year wasted.

How about India?

India’s waste tyres account for about 6-7% of the global total. With the local tyre industry growing at 12% per annum, waste volumes are rising.

India has been recycling and reusing waste tyres for four decades, although it is estimated that 60% are disposed of through illegal dumping.

Despite this, India is the second largest producer of reclaimed rubber after China. In 2011, India produced 90,000 metric tonnes of reclaimed rubber from waste tyres.

By 2016, some100 000 kms of Indian roads had been laid with asphalt blended with recycled rubber, and over 500 000 tonnes of crumb rubber modified bitumen (CRMB) is used annually in road construction. New regulations introduced in 2016 allow for import of waste tyres for recycling.

What is your technology all about?

We have developed Polymer Injection Technology (PIT), or ‘green steel’ which introduces a simple modification into the conventional manufacturing process for steel. The technology precisely controls the injection of granulated waste tyres in conventional Electric Arc Furnace (EAF) steelmaking, partially replacing non-renewable coke.

Waste tyres, like coke, are good sources of hydrocarbons. This means they can be usefully transformed in EAF steelmaking, as long as the process of injecting them into the furnace is precisely calibrated.

UNSW spent a number of years researching and understanding the high temperature reactions that take place when waste tyres partially replace coke, enabling us to optomize the operating parameters of the furnaces.

Consequently, millions of waste tyres are already being transformed into high quality steel in Australia, and around the world.

Can this technology be applied in India?

Yes, it is ideal for application in India as it is incorporated into conventional EAF steelmaking, so it does not require expensive new industrial infrastructure or any large scale new equipment.

What went into the mind for developing such technology?

My ambition to transform waste into valuable resources goes back to my childhood in India. Growing up in Mumbai, I used to walk past huge mountains of garbage on the way to school which supported communities of rubbish pickers. I imagined what it would take to convert “rubbish” into something more valuable, like a resource for steelmaking.

Rubbish pickers would then have something more valuable to sell and we could improve the environment and reduce costs for steelmakers. That was part of my drive to first study Material Sciences in India, and to then go onto post-graduate and post-doctoral research in Canada and later in Australia, where I have worked at the UNSW in Sydney since the mid-1990s.

To realise this ambition, I knew that we needed to do something really significant; we needed to revolutionise recycling science.

The world’s waste mountains are packed with materials that contain valuable elements like carbon, hydrogen, silicon and metals that we would otherwise source from virgin raw materials.

That was the idea of looking at waste tyres as a potential resource — they are valuable hydrocarbons.

Why is it necessary for India to convert waste tyre into metal?

Steel is one of the most important materials worldwide. As India’s economy grows, so does its demand for steel. ‘Green steel’ offers multiple benefits – as it makes good use of waste tyres, it reduces the cost of EAF steelmaking and reduces the environmental footprint of the industry.

What is normally done with waste tyres?

Most waste tyres end up in landfill. With our ‘green steelmaking’ process we have introduced a real economic and environmental incentive for communities and businesses to value waste tyres as an input into steelmaking, and so steer them away from landfill.

Globally, much positive work has been done to recycle or reuse tyres, but it has not kept pace with the growing volumes.

Some of these uses include burning tyres as fuel in cement kilns, the use of waste tyres in civil engineering works such as retaining walls and highway barriers, the use of granulated waste tyres for numerous applications such as sports and playground surfaces and blended into asphalt for road making or as rubberised asphalt concrete.

Waste tyres can also be burned to generate energy directly.

What are your plans to take this technology ahead?

Our technology has been already integrated into commercial steelmaking operations in Australia, Thailand, South Korea, the UK and Norway, with discussions in process for other locations. We are also exploring other options for EAF steelmaking that eliminate non-renewable fossil fuels entirely.

To share the micro-blog:
vanitec.jpg
 
NO.26 Building, An zhenli 3th Area, Chao Yang District, Beijing. Postcode: 100029
Tel: 86-10-64441860 Fax: 86-10-64410636 Email: csteelnews@126.com
www.csteelnews.com. All Rights Reserved.
 
主站蜘蛛池模板: t66y最新地址一地址二地址三| 亚洲国产成人久久综合区| 门国产乱子视频观看| 国产精品剧情原创麻豆国产| jealousvue熟睡入侵中| 插插插综合视频| 久久精品国产亚洲av电影| 欧美性大战久久久久久| 人妻内射一区二区在线视频| 翁熄系列乱老扒bd在线播放| 国产在线98福利播放视频免费| 窝窝影院午夜看片| 在线观看av片| √新版天堂资源在线资源| 无码A级毛片免费视频内谢| 久久精品国产亚洲av瑜伽| 欧美军人男男同videos可播放| 亚洲精品视频在线| 男男全肉高h视频在线观看| 哈昂~哈昂够了太多太深小说| 青青国产精品视频| 国产成人无码午夜视频在线观看 | 国产ssss在线观看极品| 高级秘密俱乐部的娇妻| 国产白嫩漂亮美女在线观看 | 曰批全过程免费视频网址| 亚洲日本久久一区二区va| 波多野结衣痴汉电车| 健身私教弄了好多次| 精品97国产免费人成视频| 哦太大了太涨了慢一点轻一点| 色碰人色碰人视频| 国产乱子伦视频大全| 韩国伦理片年轻的妈妈| 国产成人精品免高潮在线观看| z0z0z0另类极品| 国产精品久久现线拍久青草| 2021国产麻豆剧果冻传媒入口 | 国内精品久久久久久久97牛牛| av一本久道久久波多野结衣| 女人张开腿让男人插|